Latches, the D Flip-Flop & Counter Design

ECE 152A - Summer 2009

Reading Assignment

- Brown and Vranesic
 - 7 Flip-Flops, Registers, Counters and a Simple Processor
 - 7.1 Basic Latch
 - 7.2 Gated SR Latch
 - □ 7.2.1 Gated SR Latch with NAND Gates
 - 7.3 Gated D Latch
 - □ 7.3.1 Effects of Propagation Delays

July 20, 2009

ECE 152A - Digital Design Principles

Reading Assignment

- Brown and Vranesic (cont)
 - 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
 - 7.4 Master-Slave and Edge-Triggered D Flip-Flops
 - □ 7.4.1 Master-Slave D Flip-Flop
 - □ 7.4.2 Edge-Triggered D Flip-Flop
 - □ 7.4.3 D Flip-Flop with Clear and Preset
 - □ 7.4.4 Flip-Flop Timing Parameters (2nd edition)

July 20, 2009

ECE 152A - Digital Design Principles

3

Reading Assignment

- Roth
 - □ 11 Latches and Flip-Flops
 - 11.1 Introduction
 - 11.2 Set-Reset Latch
 - 11.3 Gated D Latch
 - 11.4 Edge-Triggered D Flip-Flop

July 20, 2009

ECE 152A - Digital Design Principles

Reading Assignment

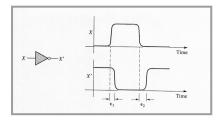
- Roth (cont)
 - 12 Registers and Counters
 - 12.1 Registers and Register Transfers
 - 12.2 Shift Registers
 - 12.3 Design of Binary Counters
 - 12.4 Counters for Other Sequences

July 20, 2009

ECE 152A - Digital Design Principles

5

Combinational vs. Sequential Logic


- Combinational logic
 - Function of present inputs only
 - Output is known if inputs (some or all) are known
- Sequential logic
 - □ Function of past and present inputs
 - Memory or "state"
 - Output known if present input and present state are known
 - Initial conditions often unknown (or undefined)

July 20, 2009

ECE 152A - Digital Design Principles

Gate Delays

- Recall from earlier lecture
 - When gate inputs change, outputs don't change instantaneously

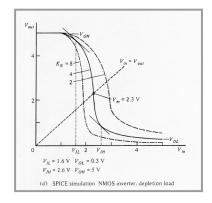
July 20, 2009

ECE 152A - Digital Design Principles

7

Feedback

- Outputs connected to inputs
 - □ Single inverter feedback
 - If propagation delay is long enough, output will oscillate



July 20, 2009

ECE 152A - Digital Design Principles

Feedback

- If the propagation delay is not long enough, the output will settle somewhere in the middle
 - $V_{in} = V_{out}$

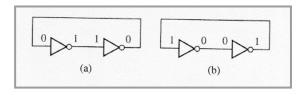
July 20, 2009

ECE 152A - Digital Design Principles

9

Feedback

- Ring Oscillator
 - Any odd number of inverters will oscillate
 - □ ½ period = total prop delay of chain

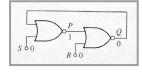


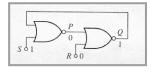
July 20, 2009

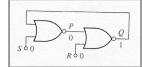
ECE 152A - Digital Design Principles

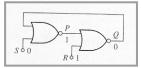
Feedback

- What about an even number of inversions?
 - □ Two inverter feedback
 - Memory (or State)
 - Static 1 or 0 "stored" in memory

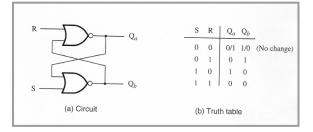

July 20, 2009


ECE 152A - Digital Design Principles


11


The Latch

■ Replace inverters with NOR gates



July 20, 2009

ECE 152A - Digital Design Principles

The Set-Reset (SR) Latch

- NOR implementation
 - □ Inverted feedback

July 20, 2009

ECE 152A - Digital Design Principles

13

The SR Latch

- R = Reset (clear)
 - \square Q \rightarrow 0, Q* \rightarrow 1
- S = Set (preset)
 - $\quad \ \ \, \square \ \, Q \rightarrow 1, \, Q^* \rightarrow 0$
- NOR gate implementation
 - □ Either input = 1 forces an output to 0

July 20, 2009

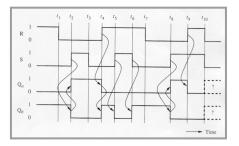
ECE 152A - Digital Design Principles

- Terminology
 - □ Present state, Q
 - Current value of Q and Q*
 - Next state, Q⁺
 - Final value of Q and Q* after input changes

July 20, 2009

ECE 152A - Digital Design Principles

15

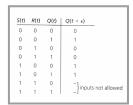

The SR Latch (cont)

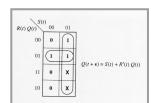
- Operation
 - □ S=1, R=0 : set to 1, Q+ = 1
 - □ S=0, R=1 : reset to 0, Q+= 0
 - □ S=0, R=0 : hold state, Q+ = Q
 - □ S=1, R=1 : not allowed
 - Q⁺ = Q⁺⁺ = 0, lose state

July 20, 2009

ECE 152A - Digital Design Principles

- Timing Diagram
 - □ RS inputs are "pulses"
 - Temporarily high, but normally low


July 20, 2009


ECE 152A - Digital Design Principles

17

The SR Latch (cont)

- Characteristic Equation
 - □ Algebraic expression of flip-flop behavior
 - □ Plot characteristic table on map, find Q⁺
 - \mathbb{Q} Q⁺ = S + R'Q (S = R = 1 not allowed)

July 20, 2009

ECE 152A - Digital Design Principles

- Characteristic Equation
 - \square Q⁺ = S + R'Q (S = R = 1 not allowed)
 - Q becomes 1 when S = 1, R = 0
 - Stays Q when S = R = 0
 - Q becomes 0 when S = 0, R = 1

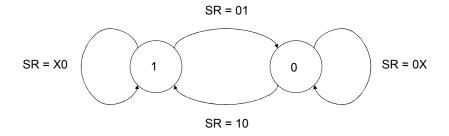
July 20, 2009

ECE 152A - Digital Design Principles

19

The SR Latch (cont)

■ State Table

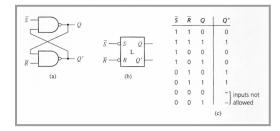

NS (Q+)

PS (Q)	SR=00	01	10	11
0	0	0	1	Х
1	1	0	1	X

July 20, 2009

ECE 152A - Digital Design Principles

■ State Diagram

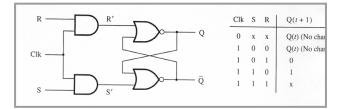

July 20, 2009

ECE 152A - Digital Design Principles

21

The SR Latch with NANDS

- NAND Based S'R' Latch
 - \square S' = R' = 0 not allowed
 - □ Either input = 0 forces output to 1

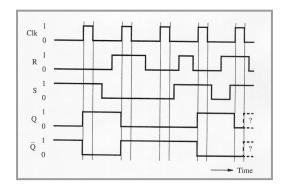


July 20, 2009

ECE 152A - Digital Design Principles

The Gated SR Latch

- Also known as "transparent" latch
 - Output follows input (transparent) when enabled

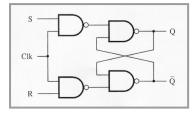

July 20, 2009

ECE 152A - Digital Design Principles

23

The Gated SR Latch (cont)

■ Timing Diagram

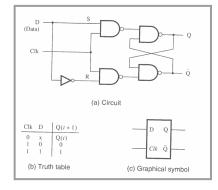


July 20, 2009

ECE 152A - Digital Design Principles

The Gated SR Latch (cont)

NAND Implementation

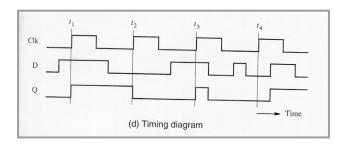

July 20, 2009

ECE 152A - Digital Design Principles

25

The Gated Data (D) Latch

■ NAND Implementation of transparent D latch

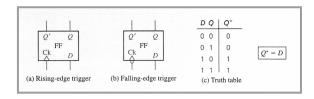


July 20, 2009

ECE 152A - Digital Design Principles

The Gated D Latch

■ Timing Diagram

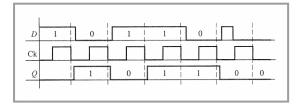

July 20, 2009

ECE 152A - Digital Design Principles

27

The Edge Triggered D Flip-Flop

- The D Flip-Flop
 - □ Input D, latched and passed to Q on clock edge
 - □ Rising edge triggered or falling edge triggered
 - Characteristic table and function



July 20, 2009

ECE 152A - Digital Design Principles

The Edge Triggered D Flip-Flop

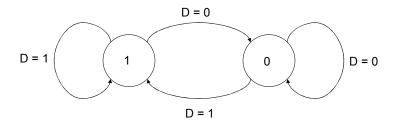
- Most commonly used flip-flop
- Output follows input after clock edge
 - Q and Q* change only on clock edge
 - Timing diagram for negative edge triggered flip-flop

July 20, 2009

ECE 152A - Digital Design Principles

29

The D Flip-Flop

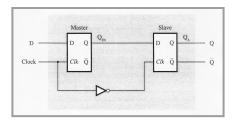

■ State Table

July 20, 2009

ECE 152A - Digital Design Principles

The D Flip-Flop (cont)

State Diagram

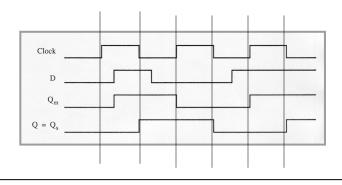

July 20, 2009

ECE 152A - Digital Design Principles

31

The Master-Slave D Flip-Flop

- Construct edge triggered flip-flop from 2 transparent latches
 - Many other topologies for edge triggered flip-flops
 - □ Falling edge triggered (below)

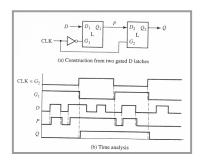


July 20, 2009

ECE 152A - Digital Design Principles

The Master-Slave D Flip-Flop (cont)

- Timing Diagram
 - □ Falling edge triggered

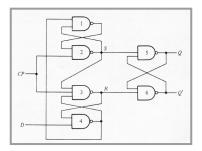

July 20, 2009

ECE 152A - Digital Design Principles

33

The Master-Slave D Flip-Flop (cont)

- A Second Timing Diagram
 - □ Rising edge triggered

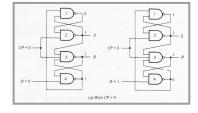


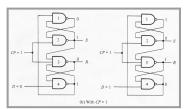
July 20, 2009

ECE 152A - Digital Design Principles

The Edge Triggered D Flip-Flop

- "True" Edge Triggered D Flip-Flop
 - □ Never transparent (unlike Master Slave)

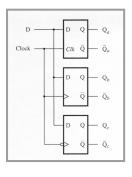

July 20, 2009


ECE 152A - Digital Design Principles

35

The Edge Triggered D Flip-Flop

■ Operation of Flip-Flop

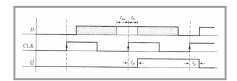



July 20, 2009

ECE 152A - Digital Design Principles

Types of D Flip-Flops

■ Gated, Positive Edge and Negative Edge

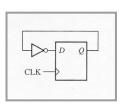

July 20, 2009

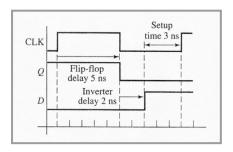
ECE 152A - Digital Design Principles

37

Timing Parameters

- \Box CLK \to Q
 - Delay from clock edge (CLK) to valid (Q, Q*) output
- \Box Setup time t_{su}
 - Stable, valid data (D) before clock edge (CLK)
- $exttt{ in}$ Hold time $t_{ ext{ in}}$
 - Stable, valid data (D) after clock edge (CLK)




July 20, 2009

ECE 152A - Digital Design Principles

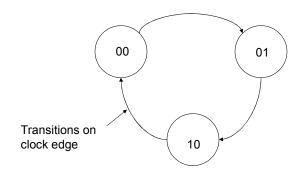
Maximum Frequency

- Maximum frequency (minimum clock period) for a digital system
 - \Box CLK \to Q + propagation delay + t_{su}

July 20, 2009

ECE 152A - Digital Design Principles

30


Counter Design with D Flip-Flops

- Design Example #1: Modulo 3 counter
 - $00 \rightarrow 01 \rightarrow 10 \downarrow$ $\uparrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$
- Requires 2 flip-flops
 - □ One for each "state variable"

July 20, 2009

ECE 152A - Digital Design Principles

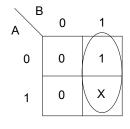
■ State Diagram

July 20, 2009

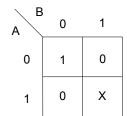
ECE 152A - Digital Design Principles

41

Counter Design with D Flip-Flops


■ State Table

PS		NS	
Α	В	A ⁺	B ⁺
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	X


July 20, 2009

ECE 152A - Digital Design Principles

Next State Maps

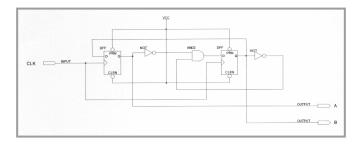
 $A^+ = B$

 $B^+ = A'B'$

July 20, 2009

ECE 152A - Digital Design Principles

43

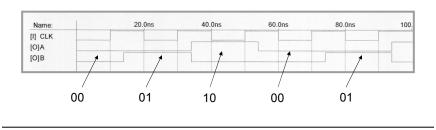

Counter Design with D Flip-Flops

- Implementation with D Flip-Flops
- What are the D inputs to flip-flops A and B?
 - □ Recall characteristic equation for D flip-flop
 - $Q^+ = D$
- Therefore, $A^+ = B \rightarrow D_A = B$
 - and...
- $B^+ = A'B' \rightarrow D_B = A'B'$

July 20, 2009

ECE 152A - Digital Design Principles

Implementation with positive edge triggered flip-flops


July 20, 2009

ECE 152A - Digital Design Principles

45

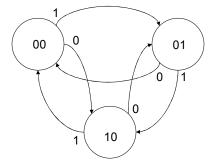
Counter Design with D Flip-Flops

- Implementation with positive edge triggered flip-flops
 - □ Timing diagram

July 20, 2009

ECE 152A - Digital Design Principles

- Design Example #2:
 - □ Modulo 3 counter with up/down* input
 - Counter counts up with input = 1 and down with input = 0
 - □ Implement with D flip-flops


July 20, 2009

ECE 152A - Digital Design Principles

47

Counter Design with D Flip-Flops

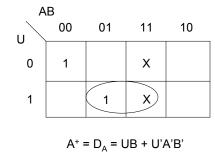
■ State diagram

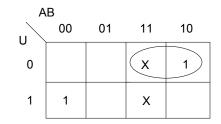
July 20, 2009

ECE 152A - Digital Design Principles

■ State table

U	Α	В	A ⁺	B ⁺
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	X	X
1	0	0	0	1
1	0	1	1	0
1	1	0	0	0
1	1	1	X	Χ


July 20, 2009


ECE 152A - Digital Design Principles

49

Counter Design with D Flip-Flops

■ Next state maps and flip-flop inputs

 $B^+ = D_B = U'A + UA'B'$

July 20, 2009

ECE 152A - Digital Design Principles